Metabolism and Pharmacology of Ethanol

Prof. David W. Craig
Dept. of Chemistry
Hobart and William Smith Colleges

Behavioral Manifestations of Alcohol Ingestion

- With 1 to 2 drinks (.01-.05 g/dL BAC) -- euphoria and perceived reduction in anxiety
- With 3 to 5 drinks (.06-.10 g/dL BAC) -- judgement and motor coordination impaired, sometimes increased aggression
- With 10 to 13 drinks (.20-.25 g/dL BAC) -- sedation
- With 0.30 g/dL BAC -- memory impairment and loss of consciousness
- With 0.40 to .50 g/dL BAC -- depressed respiration, coma, death

*BACs for inexperienced user
What Factors Determine a Person’s Blood Alcohol Concentration (BAC in g/dL)?

- Number of Drinks Consumed
- Body Size and Build
- Sex
- Time
- Past Drinking Experiences
- Is Stomach Empty or Full?

Ethyl alcohol \(\text{CH}_3\text{-CH}_2\text{-OH} \)

Dose – Number of drinks consumed

- 12 oz Beer 3.6-4.0% alcohol contains 13-17g alcohol
- 4 oz Wine 12-14% alcohol contains 14-17g alcohol
- 1-1.5 oz 80 proof Whiskey contains 12-18g alcohol

But

Long Island Iced Tea: 1 oz vodka(40%), 1 oz tequila (40%), 1 oz rum(40%), 1 oz gin(40%), 1 oz triple sec (40%), 1.5 oz sweet and sour mix, splash cola. 59g alcohol ~4 drinks

Four Loko: 23.5oz 12% alcohol 85g alcohol ~5.5 drinks
Ethyl alcohol \(\text{CH}_3\text{-CH}_2\text{-OH} \)

Body size, build, and sex determines the volume accessible to ethanol

Chemical Solubility
- Completely soluble in water
- Somewhat soluble in fat
- 30x more soluble in water than in fat
- Proportion water in the body: Men .58, Women .49

Time – How rapidly can ethanol be absorbed?

- Rate of absorption is dependent on:
 - concentration gradient between gut and blood
 - surface area of contact
 - degree of vascularization
- Effect of Food on Absorption
 - food dilutes alcohol in the digestive system
 - fatty foods are slow to digest and slow to move from the stomach to the small intestine
Time – How rapidly can ethanol removed?

- Ethanol clearance is zero order … the rate of clearance is independent of the ethanol concentration
- Average ethanol clearance rates
 - For moderate drinkers - .017 g/dL/hr
 - Drinkers consuming >60 drinks/month - .020 g/dL/hr
 - 80% of adult population > .012 g/dL/hr

Estimation of BAC

Calculation of BAC for inexperienced drinkers – The American Happy Hour Experience

<table>
<thead>
<tr>
<th>Drinks</th>
<th>Time (hr)</th>
<th>Male BAC</th>
<th>Female BAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.25</td>
<td>0.0222</td>
<td>0.0337</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>0.0444</td>
<td>0.0675</td>
</tr>
<tr>
<td>3</td>
<td>0.75</td>
<td>0.0666</td>
<td>0.1012</td>
</tr>
</tbody>
</table>

In experiment, subjects drink 1.5oz shots of 80proof scotch on 15min intervals, measuring BAC 15min after each dose of alcohol.

Ref: National Highway Traffic Safety Administration
BAC distribution of HWS students returning home late at night

Late night blood alcohol concentration on school and weekend nights (12F and 13S terms) N=348

<table>
<thead>
<tr>
<th>BAC (%)</th>
<th>School Night (N=265)</th>
<th>Weekend Night (N=83)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>90%</td>
<td>80%</td>
</tr>
<tr>
<td>.01 - .05</td>
<td>70%</td>
<td>60%</td>
</tr>
<tr>
<td>.06 - .07</td>
<td>50%</td>
<td>40%</td>
</tr>
<tr>
<td>.08 - .09</td>
<td>30%</td>
<td>20%</td>
</tr>
<tr>
<td>≥ .10</td>
<td>10%</td>
<td>10%</td>
</tr>
</tbody>
</table>

BAC distribution of HWS students returning home late at night

Late night blood alcohol concentration on school and weekend nights (12F and 13S terms) N=345

<table>
<thead>
<tr>
<th>BAC (%)</th>
<th>Males (N=200)</th>
<th>Females (N=145)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>90%</td>
<td>80%</td>
</tr>
<tr>
<td>.01 - .05</td>
<td>70%</td>
<td>60%</td>
</tr>
<tr>
<td>.06 - .07</td>
<td>50%</td>
<td>40%</td>
</tr>
<tr>
<td>.08 - .09</td>
<td>30%</td>
<td>20%</td>
</tr>
<tr>
<td>≥ .10</td>
<td>10%</td>
<td>10%</td>
</tr>
</tbody>
</table>
What if we were to continue for five drinks?

Effect of Rate of Ingestion of 10 Drinks on BAC (following a light meal)
Metabolic Differences Between Men and Women

- Women are smaller than men
- Women have lower total body water content (49%) than men (58%) of comparable size
- Gastric ADH lower in women
 - virtually nonexistent in alcoholic women
 - declines in men over 50
- Fluctuations in gonadal hormone levels during the menstrual cycle may affect the rate of alcohol metabolism

SOURCE: Alcohol Alert #10, NIAAA (1990)
Metabolic Differences Between Ethnic Groups

- Isoenzymes in Alcohol DH (ADH)
 - Beta1 in Caucasian has Km 0.00023 g/dL
 - Beta2 in Asian has Km 0.0043 g/dL
 - Beta3 in 15% African Amer. has Km .165 g/dL

- 50% Chinese and Japanese Asians have inactive mito. Aldehyde DH (ALDH) resulting in facial flushing, palpitations, dizziness, and nausea

Effect of Chronic Use

- Metabolic Tolerance

But….This is not the whole story….more to come
Alcohol on the Brain

Behavioral Manifestations of Alcohol Ingestion

- With 1 to 2 drinks (.01-.05 g/dL BAC) -- euphoria and perceived reduction in anxiety
- With 3 to 5 drinks (.06-.10 g/dL BAC) -- judgement and motor coordination impaired, sometimes increased aggression
- With 10 to 13 drinks (.20-.25 g/dL BAC) -- sedation
- With 0.30 g/dL BAC -- memory impairment and loss of consciousness
- With 0.40 to .50 g/dL BAC -- depressed respiration, coma, death

*BACs for inexperienced user
The Brain’s Division of Labor

Voluntary muscle movement, motor area for speech, emotional behavior, complex intellectual abilities

Receives sensory impulses (pain, hot, cold), and awareness of body parts

Coordinate body movement, balance

Hearing, taste, smell

Metabolism, temperature, activity level, appetite, sexual desire, reproductive cycles

Reward/Pleasure Center

Reward System of the Brain

Prefrontal cortex

Nucleus accumbens

Lateral hypothalamus

Amygdala

Hippocampus

Substantia nigra

Ventral tegmental area
Neurons

Synapse

Message Arrives
- Nerve impulse
- Presynaptic neuron
- Vesicle with neurotransmitters
- Reuptake port
- Synaptic gap
- Receptor site

Message Transmitted
- Postsynaptic neuron
How the Synapse Functions

Regulatory Synapses and Psychoactive Drugs

Cocaine Forces Neurotransmitter Release

Heroin Inhibits Substance “P” Pain Message

Substance “P”

Secondary terminal contains endorphin

Heroin
Alcohol Affects Neurotransmitter Function in the Brain

- Potentiates **GABA** receptor function
- Inhibits **Glutamate** receptor function
- Increases **Dopamine** concentration
- Increases **Seratonin** release
- Stimulates **Opiate Neuropeptide** Release

Affect on Dopamine, Serotonin, and Endogenous Opiates (BAC ~ .01-.05 g/dL)

- Dopamine stimulates pleasure centers and functions in positive reinforcement
 - alcohol increases Dopamine concentrations in nucleus acumbens and other reward centers
- Serotonin functions in mood, sleep and positive reinforcement
 - alcoholics and thrill seekers have low serotonin levels and alcohol consumption (and thrill activities) brings these levels up to normal.
 - Serotonergic drugs have reduced alcohol consumption by alcoholics.
- Endorphins and Enkephalins are natural neural peptides that bind to opiate receptors and produce euphoric effects.
 - Endorphins and Enkephalins are released by the brain when exposed to alcohol
 - Euphoria seems to stimulate further drinking
Affect on GABA function (BAC >= 0.06 g/dL)

- GABA is major inhibitory neurotransmitter controlling “arousal state” and sensory and motor activity
- Alcohol Potentiates GABA receptor function
- GABA receptor is site of action of
 - sedative/anesthetic barbiturate, pentobarbitol
 - sedative/anxiolytic benzodiazepines
- RO 15-4513 overcomes motor impairment

Affect on Glutamate Function (BAC ~ 0.02--0.2 g/dL)

- Glutamate is major excitatory neurotransmitter
- Alcohol inhibits NMDA glutamate receptor function
- Impaired NMDA Glutamate Receptor Function Causes:
 - cognitive impairment and amnesia
 - inability to learn new information
- Alcohol parallels action of PCP or “angel dust”
Effect of Chronic Use

- **Tolerance**
 - Changes in number and types of GABA receptors
 - Increase in number of glutamate receptors

- **Withdrawal**
 - Increased Anxiety within hours -- GABA
 - Seizures -- Glutamate

- **Dependence**
 - Changes in Dopamine and Seratonin function appear to be long lasting

What Causes a Hangover?

- **Pounding Headache**
 - Caused by reduced blood pressure in cranial vessels
 - Toxicity/withdrawal

- **General Lethargy**
 - Caused by buildup of lactic acid and acidosis by release of acetic acid

- **Hypersensitivity to Light and Sound**
 - Alcohol withdrawal leads to increased excitability, depressed mood, and sensitivity to stimuli

- **Queasy Stomach**
 - Empty stomach, overly acidic
 - Also due to withdrawal

- **What about taking a drink to relieve hangover symptoms?**
Alcohol and Sex

Physiological responses
- Erections slower to rise and quicker to fall
- Reduction in vaginal lubrication

Psychological Perceptions
- 45% of men and 68% of women say alcohol enhances sexual enjoyment

Rutgers study (2-3 standard drinks)
- Subjects who thought they drank alcohol were most highly aroused (those that did not actually get alcohol were slightly less aroused)
- Subjects who expected tonic but actually got alcohol were less aroused than those that expected alcohol but did not.

Important Metabolic Interactions and Health Concerns
Major Pathway for Alcohol Metabolism

Ethanol \rightarrow NAD \rightarrow NADH \rightarrow Acetaldehyde \rightarrow NAD \rightarrow NADH \rightarrow CO$_2$ + H$_2$O

Biosynthesis \leftarrow Acetic Acid \rightarrow CO$_2$ + H$_2$O

Release to Blood

Interaction with other Drugs

- Ethyl ester of Cocaine
 - potentiates cocaine “high”
- Aspirin and Cimetidine Inhibits Gastric ADH
- Liver Drug Detoxification Impaired
 - Depleted NAD impairs liver's ability to clear other drugs
Metabolic Fates of Excess Ethanol and Acetaldehyde

- Ethyl esters of Fatty Acids and Cholesterol
 - may cause heart damage, impair energy metabolism, disrupt cell membranes
- Protein Modification by Acetaldehyde
 - enzymes inactivated by imine adducts
- Ethanol can also be oxidized by MEOS/Cytochrome P450
 - MEOS oxidation produces harmful free radicals

Other Metabolic Processes Affected by Alcohol Metabolism

- High NADH/NAD ratio:
 - Impaired Energy Metabolism and increased production of lactic acid
 - Inhibits Lipid Degredation in Liver
 - Stimulation of fat synthesis and increases in LDL and HDL levels
 - Inhibition of oxidative steps in testosterone synthesis
Other Metabolic Processes Affected by Alcohol Metabolism

- Acetaldehyde Adducts
 - tubulin-mediated protein exocytosis and endocytosis inhibited....insulin, etc
 - Impaired Protein Synthesis Type II Muscle Fibers depleted
 - In alcoholics, acetaldehyde reacts with dopamine to become tetrahydroisoquinoline (THIQ) in the brain. It is thought that accumulation of THIQ is related to addiction.

Alcohol-Induced Liver Damage

- Risk becomes significant when alcohol consumption exceeds
 - 6.2oz/day for men
 - 1.55oz/day for women
- Caused by
 - Free radical rx in fatty liver
 - Cytokine stimulated differentiation of Ito cells into collagen myofibroblasts
 - Increased levels of Acetaldehyde due to lower levels of Aldehyde dehydrogenase
Alcohol-Induced Immune System Impairment

- Suppresses proliferation of lymphocytes in blood, spleen, and thymus
- Reduced B cell antibody production
- Natural Killer (NK) cells have reduced activity

Alcohol-Induced Changes in the Cardiovascular System

- Reduced risk of CAD with <=2 drinks/day
 - increased HDL, inhibition of platelet activity
- Reduction in Cerebral Vascular Disease (Stroke)
 - reduced platelet activity
- 50% greater risk of hypertension with 3-4 drinks/day
- Cardiomyopathy (weakened heart muscle)
 - impaired protein metabolism, free radicals
- Arrhythmias caused by alcohol effect on sinoatrial node