

Dept. of Chemistry Hobart and William Smith Colleges

Behavioral Manifestations of Alcohol Ingestion

- With 1 to 2 drinks (.01-.05 g/dL BAC) -- euphoria and perceived reduction in anxiety
- With 3 to 5 drinks (.06-.10 g/dL BAC) -- judgement and motor coordination impaired, sometimes increased aggression
- With 10 to 13 drinks (.20-.25 g/dL BAC) -- sedation
- With 0.30 g/dL BAC -- memory impairment and loss of consciousness
- With 0.40 to .50 g/dL BAC -- depressed respiration , coma, death

*BACs for inexperienced user

What Factors Determine a Person's Blood Alcohol Concentration (BAC in g/dL)?

- Number of Drinks Consumed
- Body Size and Build
- Sex
- Time
- Past Drinking Experiences
- Is Stomach Empty or Full?

Ethyl alcohol CH₃-CH₂-OH

Dose – Number of drinks consumed

12 oz Beer 3.6-4.0% alcohol contains 13-17g alcohol
4 oz Wine 12-14% alcohol contains 14-17g alcohol
1-1.5 oz 80 proof Whiskey contains 12-18g alcohol

But

Long Island Iced Tea: 1oz vodka(40%), 1oz tequila (40%), 1oz rum(40%), 1oz gin(40%), 1oz triple sec (40%), 1.5oz sweet and sour mix, splash cola.

h cola. 59g alcohol ~4 drinks

Four Loko: 23.5oz 12% alcohol

85g alcohol ~5.5 drinks

Ethyl alcohol CH₃-CH₂-OH

Body size, build, and sex determines the volume accessible to ethanol

Chemical Solubility

•Completely soluble in water •Somewhat soluble in fat •30x more soluble in water that in fat

•Proportion water in the body: Men .58, Women .49

- Rate of absorption is dependent on:
 - concentration gradient between gut and blood
 - ◆ surface area of contact
 - degree of vascularization
- Effect of Food on Absorption
 - food dilutes alcohol in the digestive system
 - fatty foods are slow to digest and slow to move from the stomach to the small intestine

Time – How rapidly can ethanol removed?

- Ethanol clearance is zero order ... the rate of clearance is independent of the ethanol concentration
- Average ethanol clearance rates
 - For moderate drinkers .017 g/dL/hr
 - Drinkers consuming >60 drinks/month .020 g/dL/hr
 - ♦ 80% of adult population > .012 g/dL/hr

Metabolic Differences Between Ethnic Groups

- Isoenzymes in Alcohol DH (ADH)
 - Beta1 in Caucasian has Km 0.00023 g/dL
 - Beta2 in Asian has Km 0.0043 g/dL
 - Beta3 in 15% African Amer. has Km .165 g/dL
- 50% Chinese and Japanese Asians have inactive mito. Aldehyde DH (ALDH) resulting in facial flushing, palpitations, dizziness, and nausea

Behavioral Manifestations of Alcohol Ingestion

- With 1 to 2 drinks (.01-.05 g/dL BAC) -- euphoria and perceived reduction in anxiety
- With 3 to 5 drinks (.06-.10 g/dL BAC) -- judgement and motor coordination impaired, sometimes increased aggression
- With 10 to 13 drinks (.20-.25 g/dL BAC) -- sedation
- With 0.30 g/dL BAC -- memory impairment and loss of consciousness
- With 0.40 to .50 g/dL BAC -- depressed respiration , coma, death

*BACs for inexperienced user

Alcohol Affects Neurotransmitter Function in the Brain

- Potentiates GABA receptor function
- Inhibits Glutamate receptor function
- Increases **Dopamine** concentration
- Increases **Seratonin** release
- Stimulates Opiate Neuropeptide Release

- Dopamine stimulates pleasure centers and functions in positive reinforcement
 - alcohol increases Dopamine concentrations in nucleus acumbens and other reward centers
- Serotonin functions in mood, sleep and positive reinforcement
 - alcoholics and thrill seekers have low serotonin levels and alcohol consumption (and thrill activities) brings theses levels up to normal.
 - Serotonergic drugs have reduced alcohol consumption by alcoholics.
- Endorphins and Enkephalins are natural neural peptides that bind to opiate receptors and produce euphoric effects.
 - Endorphins and Enkephalins are released by the brain when exposed to alcohol
 - Euphoria seems to stimulate further drinking

Affect on GABA function (BAC >=.06 g/dL)

- GABA is major inhibitory neurotransmitter controlling "arousal state" and sensory and motor activity
- Alcohol Potentiates GABA receptor function
- GABA receptor is site of action of
 - sedative/anesthetic barbiturate, pentobarbitol
 - sedative/anxiolytic benzodiazipines
- RO 15-4513 overcomes motor impairment

Affect on Glutamate Function (BAC ~.02--.2 g/dL)

- Glutamate is major excitatory neurotransmitter
- Alcohol inhibits NMDA glutamate receptor function
- Impaired NMDA Glutamate Receptor Function Causes:
 - cognitive impairment and amnesia
 - inability to learn new information
- Alcohol parallels action of PCP or "angel dust"

■ Tolerance

- changes in number and types of GABA receptors
- Increase in number of glutamate receptors

Withdrawal

- increased Anxiety within hours -- GABA
- seizures -- Glutamate

Dependence

 changes in Dopamine and Seratonin function appear to be long lasting

Pounding Headache

- Caused by reduced blood pressure in cranial vessels
- Toxicity/withdrawal

General Lethargy

- Caused by buildup of lactic acid and acidosis by release of acetic acid
- Hypersensitivity to Light and Sound
 - Alcohol withdrawal leads to increased excitability, depressed mood, and sensitivity to stimuli

Queasy Stomach

- Empty stomach, overly acidic
- Also due to withdrawal
- What about taking a drink to relieve hangover symptoms?

Alcohol and Sex

- Physiological responses
 - Erections slower to rise and quicker to fall
 - Reduction in vaginal lubrication
- Psychological Perceptions
 - 45% of men and 68% if women say alcohol enhances sexual enjoyment
- Rutgers study (2-3 standard drinks)
 - Subjects who thought they drank alcohol were most highly aroused (those that did not actually get alcohol were slightly less aroused)
 - Subjects who expected tonic but actually got alcohol were less aroused than those that expected alcohol but did not.

Metabolic Fates of Excess Ethanol and Acetaldehyde

- Ethyl esters of Fatty Acids and Cholesterol
 - may cause heart damage, impair energy metabolism, disrupt cell membranes
- Protein Modification by Acetaldehyde
 - enzymes inactivated by imine adducts
- Ethanol can also be oxidized by MEOS/Cytochrome P450
 - MEOS oxidation produces harmful free radicals

Other Metabolic Processes Affected by Alcohol Metabolism

■ High NADH/NAD ratio:

- Impaired Energy Metabolism and increased production of lactic acid
- Inhibits Lipid Degredation in Liver
- Stimulation of fat synthesis and increases in LDL and HDL levels
- Inhibition of oxidative steps in testosterone synthesis

Other Metabolic Processes Affected by Alcohol Metabolism

Acetaldehyde Adducts

- tubulin-mediated protein exocytosis and endocytosis inhibited....insulin, etc
- Impaired Protein Synthesis Type II Muscle Fibers depleted
- In alcoholics, acetaldehyde reacts with dopamine to become tetrahydroisoquinoline (THIQ) in the brain. It is thought that accumulation of THIQ is related to addiction.

Alcohol-Induced Immune System Impairment

- Suppresses proliferation of lymphocytes in blood, spleen, and thymus
- Reduced B cell antibody production
- Natural Killer (NK) cells have reduced activity

Alcohol-Induced Changes in the Cardiovascular System

- Reduced risk of CAD with <=2 drinks/day
 increased HDL, inhibition of platelet activity
- Reduction in Cerebral Vascular Disease (Stroke)
 reduced platelet activity
- 50% greater risk of hypertension with 3-4 drinks/day
- Cardiomyopathy (weakened heart muscle)
 impaired protein metabolism, free radicals
- Arrhythmias caused by alcohol effect on sinoatrial node